
Journal of Global Optimization19: 27–50, 2001.
© 2001Kluwer Academic Publishers. Printed in the Netherlands.

27

Parallel Simulated Annealing Algorithms in Global
Optimization

ESIN ONBAŞOĞLU1 and LINET ÖZDAMAR2

1Yeditepe University, Department of Computer Engineering;2Yeditepe University, Department of
Systems Engineering, Gayrettepe Emekli Subay Evleri 23/5, Istanbul, Turkey (e-mail:
lozdamar@hotmail.com)

(Received 17 August 1999; accepted in revised form 21 June 2000)

Abstract. Global optimization involves the difficult task of the identification of global extremities
of mathematical functions. Such problems are often encountered in practice in various fields, e.g.,
molecular biology, physics, industrial chemistry. In this work, we develop five different parallel
Simulated Annealing (SA) algorithms and compare them on an extensive test bed used previously
for the assessment of various solution approaches in global optimization. The parallel SA algorithms
consist of various categories: the asynchronous approach where no information is exchanged among
parallel runs and the synchronous approaches where solutions are exchanged using genetic operators,
or where solutions are transmitted only occasionally, or where highly coupled synchronization is
achieved at every iteration. One of these approaches, which occasionally applies partial information
exchanges (controlled in terms of solution quality), provides particularly notable results for functions
with vast search spaces of up to 400 dimensions. Previous attempts with other approaches, such
as sequential SA, adaptive partitioning algorithms and clustering algorithms, to identify the global
optima of these functions have failed without exception.

Key words: Global optimization, Parallel simulated annealing

1. Introduction

We consider the optimization problem min f(x) subject to only lower and upper
bound constraints on the variables, namely,x∈α0⊂Rn, whereα0 is a hypercube
defined by boundaries lbj ≤ xj ≤ ubj , j =1...n, and lbj , ubj are lower and upper
bounds on variablexj . The problems of locating the global optima of such functions
arise in diverse disciplines such as physics, chemistry and molecular biology.

Here, we do not aim to provide an exhaustive literature survey of previously de-
veloped approaches, but classify solution approaches under the following categor-
ies: probabilistic search methods, and deterministic methods including adaptive
partitioning algorithms (interval estimation methods).

Probabilistic search methods such as random search integrated with local search,
e.g., Density Clustering (Törn, 1978), Controlled Random Search (Price, 1978),
Multistart and Multi Level Single Linkage (Rinnooy Kan and Timmer, 1984) are
proposed for global optimization. In such methods,α0 is subjected to uniform



28

random search and then, a number of steepest descent iterations are applied locally
to every selected seed. In other approaches, promising seeds subjected to local
search may be selected according to a geometric criterion incorporating topological
knowledge gained from the functional values obtained in uniform Random Search
(Törn and Viitanen, 1994; Ali and Storey, 1994). Furthermore, metaheuristics such
as simulated annealing (SA) (Kirkpatrick et al., 1983), and genetic algorithms (GA)
(Michalewicz, 1994) are also among probabilistic solution methods.

Adaptive partitioning algorithms partition and re-partition the search space into
smaller sections with the aim of locating a small interval where the global optimum
lies (e.g., Pinter, 1992; Horst and Tuy, 1996). In interval estimation approaches
based on a model supposition off(x) (e.g., Wingo, 1983; Zilinskas, 1981), it is
assumed thatf(x) belongs to a prespecified class of functions such as Lipshitzian
functions or it is assumed thatf(x) is a realization of a stochastic process (e.g.,
Wiener (for unaryf(x)), or Gaussian). The prior model off(x) is integrated with
the information gained from evaluating the functional values of points at given
locations such as the boundaries or the diagonal of the sub-region. Using this
information an adaptive posterior model off(x) is obtained in each iteration and
sub-regions are evaluated accordingly. In the interval estimation approach based
on inclusion functions (Moore, 1979; Moore and Ratschek, 1988), the bounds on
f(x) within a specific interval are calculated by replacing the real operations inf(x)
by their pre-determined interval operations resulting in an interval onf(x) for each
operation. Then, when all the terms are aggregated, an enclosure off(x) is obtained.
Thus, each partition is evaluated with the aid of an inclusion function defined on
f(x) and only the boundaries on each variable need to be known in every interval.
Naturally, the strength of the bounds onf(x) depends on the inclusion function as
well as the behaviour off(x) within the interval.

An adaptive partitioning algorithm developed by Demirhan et al. (1999) com-
bines the deterministic approach with the probabilistic one. Namely, in each parti-
tion samples are collected randomly and the evaluation of a partition is conducted
by using a fuzzy measure which aggregates sample values.

2. The Goal of This Study

Özdamar and Demirhan (2000a, b) provide extensive computational surveys re-
flecting the performance of both types of approaches (deterministic adaptive parti-
tioning approaches and probabilistic approaches including many SA versions and
clustering methods) where a large number of test functions are used. The authors
reach the following empirical conclusion: SA (SA with local search (Özdamar and
Demirhan, 2000a), and Adaptive SA (ASA, Ingber, 1995)) and the fuzzy adaptive
partitioning scheme (Özdamar and Demirhan, 2000b) are best performing ones
among the tested algorithms. However, when the number of variables increase
(above ten), the performance of both ASA and the fuzzy partitioning scheme deteri-



29

orate considerably and the SA with local search scheme becomes best performing.
Yet, the results of the best approach is far from satisfactory.

Thus, in this paper, in order to achieve better solution quality, we carry out
further enhancements on SA by different parallelization schemes. In the following
sections, we discuss several parallelization approaches proposed in the literature,
and then, briefly describe the parallel algorithms developed here for implementa-
tion.

3. Sequential and Parallel Simulated Annealing

The performance of SA depends on the number of variables of the function under
investigation, because, as a single point search technique, SA converges rather
slowly in order to provide sufficient moves carried out in every direction (vari-
able). A convergence proof for SA in the real domain is provided by Dekkers and
Aarts (1991). Various SA implementations exist in the literature (e.g., Corana et
al., 1987; Ingberg, 1994; Zacharias et al., 1998). The strong points of SA and some
pitfalls for potential SA users are indicated in an extensive review given by Ingber
(1994) where a wide range of application areas from finance to combat analysis are
described.

SA is a single point stochastic search technique where in each iteration, a neigh-
bour is created from a current solution by changing a part of the solution and if the
neighbour’s objective function value is better than that of the existing solution, the
neighbour replaces the current solution. Else, the neighbour is accepted probabilist-
ically. The probability of acceptance depends on the current annealing temperature
which is controlled by the cooling scheme.

The quality of SA’s performance is usually affected by the configuration of the
starting solution. Researchers often compensate for the latter deficiency by re-
running SA with a new seed each time and reporting the best solution achieved
among all processes. Hence, the diversity of the search space is achieved to some
degree. Since each SA process (starting from a possibly different solution) is ex-
ecuted independent of the other SA processes, this approach can be implemented
on parallel processors in a completely asynchronous (no communication between
processors) manner.

Some researchers develop hybrid meta-heuristics which result in a natural di-
versification of SA. For instance, Kurbel et al. (1998) discuss the parallel recom-
binative SA (a GA/SA hybrid) where mutated chromosomes are accepted into the
population by Boltzman annealing. Some others employ SA as a pre-optimizer or
post-optimizer of some chromosomes in GA’s population (e.g., Lin et al., 1991;
Özdamar and Birbil, 1998).

Parallelization of SA as a multi-start search technique is discussed in Frost et al.
(1993) and also in Ingber (1994). Due to the fact that SA is a naturally sequential
algorithm, it is difficult to parallelize SA without changing its serial nature (Chen
et al., 1998). One method to classify parallel SA implementations is to distinguish



30

between Single Markov Chain and Multiple Markov Chain implementations (Lee
and Lee, 1996). In the literature, numerous methods of parallelization exist, ranging
from asynchronous to various categories of synchronous (e.g., Aarts et al., 1986;
Casotto et al., 1987; Kravitz and Rutenbar, 1987; Greening, 1990; Aarts and Korst,
1991; Balardi and Orlando, 1989; Wendt and König, 1998; Lee and Lee, 1996).

Kliewer and Tschöke (1998) discuss in detail the synchronization alternatives
in parallel SA. First, parallel approaches are classified under the two following
categories:

i. Application-dependent parallelization where a problem instance is divided
among several processors which communicate only when dependencies make
it necessary;

ii. Problem independent parallelization whose sub-categories are the following:
a. asynchronous parallelization where independent SA chains (workers) with

differing starting solutions are generated and run for a given number of it-
erations, and the best solution among them is reported,

b. synchronous parallelization where only cost values are transmitted among
workers,

c. synchronous parallelization based on the occasional exchange of solutions
among workers,

d. clustered parallelization based on the intensive exchange of solutions,
e. highly coupled synchronization where each worker generates and evaluates a

neighbour solution.
Here, a worker is defined generically as a SA chain or a SA procedure. Hence,
there could be several workers on one processor.

Kliewer and Tschöke (1998) develop a hybrid algorithm based on ii.a, ii.d and
ii.e where each worker starts making moves independently on its own configur-
ation, and when the acceptance ratio becomes low, workers are grouped into a
cluster, working together in the search of a neighbour on a common SA chain.
Thus, algorithms of categories ii.a, ii.c, ii.d define Multiple Markov Chains SA,
because they enable independent sequences of moves on each worker (SA chain)
during the intervals between consecutive communications. On the other hand, cat-
egory ii.e defines a Single Markov Chain SA, since a single move is selected from
a number of moves (carried out by each worker on the same SA chain) and it is
then transmitted to the workers as the global configuration. Similarly, algorithms
of category ii.b run a Single Markov Chain, since workers share the computational
burden of cost calculations.

In the family of algorithms classified under category ii.c, several options are
available. One option would be to conduct several SA chains independently, and
after a number of successful moves are executed by each worker, to replace the
configuration (solution) on each worker by the best solution among all chains. It
is also possible to choose a configuration by Boltzmann annealing or randomly.



31

Then, independent execution of each SA chain starts again. Another option is to
run independent SA chains, and then, after each worker reaches down to a given
target temperature, one configuration is selected and replaces the one on every
worker which starts to work independently again until the next target temperature
is reached. In category ii.c, one can also devise an algorithm which exchanges
parts of each worker’s solution occasionally (similar to the crossover operator in
Genetic Algorithms) after a number of independent moves made by each worker
(Wendt and König, 1998).

The degree of coupling in the synchronization of parallel processes depends on
the number of communications realized by the algorithms. For instance, in category
ii.e all workers work on the same master configuration each in parallel by gener-
ating independently one move. One of the accepted moves (on a worker) replaces
the master configuration and the process starts again (Diekmann et al., 1993). It is
possible to refine the last algorithm by enabling each accepted move to modify the
master configuration provided that their joint effects do not lead to a deterioration
in the objective function value. Namely, perturbations which are beneficial to the
objective on their own, become detrimental when applied to the solution jointly.
For instance, an objective function value to be minimized decreases when a positive
variable with a positive coefficient becomes negative. However, if the product of
two positive variables exists in the objective, it is harmful to turn the values of
both variables into negative numbers. The Highly Coupled Synchronous (HCS)
algorithm proposed here is based on the latter idea.

4. Implementation of Parallel SA in Global Optimization

4.1. THE CORE SA APPROACH

The basic SA approach (Özdamar and Demirhan, 2000a) which is the core of all
parallel implementations proposed here is briefly described as follows.

4.1.1. Initial solution. The initial solution is generated randomly by assigning a
value to each dimensioni, i=1...N, in the interval [lbi ,ubi ] wherelbi andubi are the
lower and upper bounds for variablei, respectively.

4.1.2. Neighbour generation scheme.The neighbour solution,xk+1, to the cur-
rent solutionxk in iterationk is created as follows. Select a random dimensioni∗
and compute the variable values (over all dimensions,i) of the neighbour by the
following equations. Ifi=i∗, then

xk+1
i = xki + u(ubi − xki ), sgn(u− 0.5) < 0,

and

xk+1
i = xk

i − u(xk
i − lbi), sgn(u− 0.5) ≥ 0.



32

Else,

xk+1
i = xk

i , whereu ∈ U[0,1].

Here,u is a random variable uniformly distributed between zero and one. In
this scheme, a variablei∗ is selected randomly and a decision is made arbitrar-
ily if the value of the variable in the selected dimension is to be decreased or
increased. Then, a random amount is added/subtracted from the current variable
value without violating the corresponding upper and lower bound while the values
of the remaining variables stay intact.

4.1.3. Acceptance of a neighbour solution.The new function value is calculated
and the solution is accepted if the move improves the current solution. Else, a non-
improving move is accepted according to the geometric cooling scheme (described
as Simulated Quenching by Ingber, 1994) used with success previously in the
global optimization context (Özdamar and Demirhan, 2000a):

PA(1, tk) = exp(−(1/(f (xk)tk)))

where, PA is the probability of acceptance,1 is the difference betweenf(xk+1)
andf(xk), andtk is the temperature in iterationk. If a randomly generated number
between zero and one turns out to be less than PA, then the deteriorating move
is carried out.tk depends on the number of times a deteriorated solution has been
accepted. Initiallytk is equal to one, but after each accepted non-improving move,
it is reduced as follows.

tk+1← tk/(1+ βtk),

whereβ is a nonnegative small constant less than one. The aim in reducing the
temperature at every accepted non-improving move is to direct the search away
from unfavourable regions. Re-annealing takes place iftk drops below 0.01 during
the search andtk is then re-assigned the value of one.

The number of iterations allowed (moves or perturbations), MaxMove, is pro-
portional to the dimensionN of the function. Here, we set MaxMove to 1000∗N.

4.2. PARALLEL IMPLEMENTATIONS

In this work, we adopt the problem-independent parallelization approach, because
mathematical functions whose global optima are to be identified have no restric-
tions such as the separability of terms. Five parallel SA algorithms are developed
here for distributed memory Multiple Instruction Multiple Data (MIMD) systems.
In all algorithms, there are P workers, which are responsible for processing the
iterations of SA chains, and a master process gathers the solutions from workers



33

to trigger the next round of parallel chains. The five approaches proposed here are
described as follows.

4.2.1. Asynchronous Approach (AS).The asynchronous approach is of category
ii.a described in the previous section. The master generatesP independent SA
chains which execute concurrently MaxMove perturbations of the core SA al-
gorithm and reports the best solution obtained among all workers. This approach
does not carry communications overhead except for identifying the best configura-
tion when all SA chains terminate.

4.2.2. Synchronous Approach with Occasional Solution Exchanges (SOS).The
second approach is of category ii.c where independent SA chains exchange solu-
tions by occasional crossover operations similar to Genetic Algorithms (GAs). SOS
is a hybrid SA/GA. The basic idea of SOS is suggested by Wendt and König (1998)
among other authors who have proposed SA/GA hybrids for zero-one integer pro-
gramming (e.g., Chen et al., 1998; Özdamar and Birbil, (1998). However, the
SOS implemented here has its own particular properties: the temperature reduction
policy is the one explained in the core SA algorithm; the probability of selecting
a crossover mate is adapted from Özdamar (1999), and the crossover operator is
developed here. The aim of SOS is to merge the best solutions obtained independ-
ently by each worker with those of other SA chains via a crossover operation. In
this manner, parallel search efforts resulting in good quality solution segments are
utilized more efficiently.

Initially, the user specifies the number of communications (NCom) to take place
between the master and workers. The number of communications is counted bys
where 1≤s≤NCom.

Each worker generates its own initial solution and is allowed to run independ-
ently for MaxMove/NCom moves. However, the temperature reduction scheme is
not realized by the workers. Rather, the master imposes a given temperature,ts ,
which is updated only by the master after set of communications. (Initially,ts is set
to one.)

After MaxMove/NCom moves, each workerp reports the best solutionrps, and
its valuefps . The sum offps overp=1,...P, is stored asEs. The master then carries
out the following crossover operation among solutionsrps, p=1,...P. The offspring
and the solutions which have not been replaced by the offspring constitute the new
population.

The probability of each solutionrps for being selected as a parent is calculated
as Mins /fps , where Mins is the minimum function value overfps, p=1,...P. Hence,
a solution whose function value is closer to Mins has a higher chance of being se-
lected as a mate for solutionrps. Next, these selection probabilities are normalized
over allp.

To each solutionrps , p=1,...P, the following crossover operator is applied if
its selection probability permits it to be a parent. After crossover is realized, the



34

offspring replacesrps to obtainrps+1. First, a solutionrq s (q6=p) is selected ran-
domly as a mate for crossover withrps according to its own cumulative selection
probability. The crossover operator then assigns a weight to solutionrps where
wps= fps/(fps+fq s). Then, the value of one randomly selected variable i pertaining
to solutionrps is assigned the following new value:xpi s+1= (1– wps) xpis+ wp

s

xqi s . Thus, a weighted combination of both solutions’ corresponding variable val-
ues is assigned to variable i in solutionrps+1, the weights depending on the function
values of each solution. The crossover operation results in a single offspring stored
asrps+1.

The sum of the new population’s function values is stored asEs+1. If after the
crossover operations,Es+1 is less thanEs, then the temperaturets+1, is not reduced,
because the population performance has improved. Otherwise,ts+1 is reduced to
ts+1 ← ts / (1+β Es+1/ Es). Finally, the master redistributes the new population,
rps+1, p=1,...P, to workers to execute another MaxMove/Ncom moves with the
updated temperaturets+1. The communication index s is then incremented by one.
This procedure is repeated until each worker executes MaxMove moves in NCom
communication sets.

Hence,SOSis a SA/GA hybrid where partial exchanges of solutions take place
among independent SA threads realized concurrently. Since the crossover operator
favors good quality solutions, the overall population’s solution quality is likely
to improve after MaxMove/NCom moves. It should be noted that unlikeASwhere
each worker controls its own cooling rate, inSOS, the global temperature is updated
according to the overall solution quality of the population.

4.2.3. Synchronous Approach with Occasional Enforcement of Best Solution-Fixed
Intervals (SOEB-F).This approach is also of category ii.c. Similar to SOS, the
user specifies the number of communications (NCom) that are to take place among
parallel SA chains and the master. InSOEB-F, the master generates P random
initial solutions, selects the best one and sends it to each worker as the starting
solution. Then, each worker is allowed to run independently for a fixed number
(MaxMove/NCom) of moves. After MaxMove/NCom moves, the workers report
their correspondingfps , p=1,...P, to the master who selects Mins among them. The
master then retrieves the solution whosefps is equal to Mins, and sendsrp∗

s (p∗ is
the worker which reports Mins) to the other workers as the new starting solution.

The temperaturets is also controlled by the master and communicated along
with the best solution. Initially,ts is set to one. Then, after MaxMove/NCom moves,
the master checks the values of Mins and Mins−1. If Min s is greater than Mins−1,
ts is reduced byts+1← ts / (1+β ts). Otherwise,ts+1 assumes the value ofts. The
above scheme of imposing the best solution on the workers and adjusting the global
annealing temperature is repeated NCom times.

The communication policy ofSOEB-F is described as ‘periodic exchange
scheme’ by Lee and Lee (1996). The Markov Chains between two successive
communications are called segments. Since the best global solution becomes the



35

seed after every communication, the multiple Markov Chains are not completely
independent. When viewed in this respect, SOS is also a periodic exchange scheme.

4.2.4. Synchronous Approach with Occasional Enforcement of Best Solution-
Varying Intervals (SOEB-V).Similar to SOEB-F, in SOEB-V (also of category
ii.c), the master generates P random initial solutions, selects the best one and
sends it to each worker as the starting solution. However, the user does not specify
NCom. Rather, the master sends each worker, the current temperature,ts and the
target temperature, Tars. Tars is set tots minusε, at the beginning of each set of
communications.ε is a user-specified small real number larger than or equal toβ

and less than one. In order to prevent negative temperatures, the master resetsts to
one as soon as it becomes less thanε. Each time there is communication, besidests

and Tars, workers also receiverp∗
s from the master. Starting fromrp∗

s each worker
conducts an independent search untilts is reduced to Tars according to the cooling
policy described in the core SA algorithm. Thus, as the value ofε increases, the
number of moves carried out during independent search increases and the number
of communications decreases. However, the number of moves carried out by each
worker is not constant, but variable depending on the successive states visited by
the Markov Chain.

SOEB-V’s communication structure is called the "dynamic exchange scheme"
in Lee and Lee (1996). In other words, in order to enable communication, the
master waits for each worker to reach an equivalently favourable state in terms
of the convergence of its Markov Chain. Hence, independent Markov Chains may
guide each other more efficiently.

4.2.5. Highly Coupled Synchronous Approach (HCS).HCS is an approach of
category ii.e. A single Markov Chain is followed by every worker. The algorithm
is briefly described as follows.

The master generates a random initial solution and distributes it among the
workers. The master also sends to each worker the specific variable,d, on which the
worker should carry out a move. (d is selected randomly for each workerp.) The
master stores the global solution asRs. (Initially, the counters is set to one.) Each
worker p performs one perturbation on the value of variabled, xpds , in solution
Rs, and evaluates the move based onts which is also sent by the master to the
worker along withRs. The master then receives the changed or unchangedxpd s

andfps , p=1,...P, from the workers and sorts the moves in ascending order offps .
The movexp∗,d s resulting in Mins is accepted andRs is updated, replacing the
value of variable d byxp∗,d s to result inRs+1. Next, the master re-configuresRs+1

by trying the next move in the sorted list. The variable’s value corresponding to
the variable of the next sorted move is now replaced. Taking into consideration
the joint effect of the two moves, the master re-calculates the newfRs+1 and if
the new value is better than the previous value, the next move is accepted. This
process of replacing the values of variables as indicated in the sorted array and



36

re-calculating the correspondingfRs+1 goes on until all moves achieved by the
workers are tested consecutively, taking into account their joint effects. The final
configuration providesRs+1. At that point, the master adjuststs+1after comparing
fRs+1 with fRs according to the cooling strategy described in the core SA algorithm.
Next, Rs+1 is re-distributed among workers for the next round of moves and the
indexs is incremented by one.

Thus, in HCS a perturbation improvingfRs updatesRs after having been first
screened by a worker. Although the screening carried out by the worker involves
Boltzman acceptance rule, that of the master is purely hill-climbing.

Obviously, unlike SOEB-F and SOEB-V, the master has a larger CPU load
due to sorting andP times re-evaluating fRs. Yet, the communication overhead is
more essential. In HCS, the master conducts a very tight surveillance on the search
process. Each move invokes a set of communications resulting in a heavy com-
munication overhead. Due to this reason it may be desirable to reduce the number
of communications by using the periodic exchange scheme. Namely, the master’s
dominant control over the workers is relaxed by letting each worker execute its
own moves starting fromRs at the temperaturets which is also received from the
master. Similar toSOEB-F, the master communicates with the workers at every
(MaxMove/NCom) moves. However, unlikeSOEB-F, the worker is allowed to per-
form MaxMove/NCom moves only on the selected variable,d, received from the
master. Then, the master receivesxpd s and the correspondingfps from every worker
and starts the hill-climbing procedure to decide onRs+1. We denote this procedure
the Modified HCS (MHCS). Thus, MHCS becomes a more efficient approach (a
combination of categories ii.c and ii.e) where search is conducted in parallel by
the workers along (possibly) different directions in space. Namely, the SA chain is
split into parallel chains in a relatively more controlled manner thanSOEB-F, since
moves are executed along pre-determined paths. The end products of these paths
(the best solution reached) are then collected back and build up the solution of the
common SA chain by implementing the hill-climbing procedure. The temperature
reduction scheme controlled by the master is preserved as applied in the original
HCSversion. However, temperature is reduced after MaxMove/NCom moves at
the earliest.

5. Computational Experiments with Parallel SA

The performance of the parallel approaches described here is investigated on 77
test functions with up to 10 variables and 29 test functions up to 400 variables.
The first set of 77 problems and 19 test functions of the second set are also used
by Özdamar and Demirhan (2000a). Thus, here, the second set of problems is
extended by 10 test functions. This set of 29 functions are composed of 11 different
test functions with variants of increasing numbers of variables. (Performance with
respect to solution quality deteriorates as the number of variables increase, because



37

the search space expands.) We cite both the first and the second set of test problems
in the Appendix.

At this point, several remarks about the difficulty of the test functions should be
made. In a recent article by Törn et al. (1999), test problems are assigned several
complexity grades and they are classified as unimodal (U), easy (E1, E2), moderate
(M1, M2), difficult (D1, D2). This classification is based on properties such as
number of local minimizers, embedded or isolated global minimum and the size
of the region of attraction of the global minimum. For instance, E1 and E2 (and
similarly, M1/M2 and D1/D2 ) are differentiated by the number of local minima.
M1/M2 type problems have embedded (local optima are near the global optimum)
global optima whereas D1/D2 type problems have isolated global optima which
are harder to detect. In both M1/M2 and D1/D2 types the region of attraction is
small.

In the test problems provided in the Appendix, almost all types of problems
exist. One can deduce the complexity of a test function by its properties indicated
in the Appendix. For instance, in the first set of problems, the initial 7 problems
are multimodal but well-behaved functions (E1/E2 types). The next 6 functions are
of moderate complexity, e.g., the region of attraction in the 13th function is very
small but embedded among a very large number of local minima. It is not possible
to provide graphical illustrations of all these functions here, but they are found in
their respective references. Similarly, the functions 20–22 are of D2 type (isolated
global optimum in a small interval and local minima far from it) whereas the 23rd
is a convex function which is solvable using gradient information. The 24th test
function is of D1 type. The 28th function (Griewank) has M1 type complexity.
Most of the Levy problems fall into the category E2. As indicated in Törn et al.
(1999) popular test functions such as Branin, Shekel5, etc. fall into the E1 category.
The 63rd function is of D2 category due to the abundant number of local optima
and an isolated global minimum. The 75th test function is of D1 category due the
singular global optimum located in a very small interval (no local optima exist).
As for the second set of functions the first four are of easy type, the fifth one
(the 13th in the first set) has increased M2 complexity, the Powersum (22nd in
the first set) and Schewel’s sine root functions (24th in the first set) have increased
D2/D1 complexity due to the number of variables involved. The Griewank function
has increased M2 complexity. Ackley’s function is of easy type. Consequently, the
collection of test functions provided in the Appendix represents a group composed
of all complexity categories described in the recent work of Törn et al. (1999).

In Table 1, we report the results provided by Özdamar and Demirhan (2000a)
both for the first and second set of test functions. The sequential algorithms that are
reported as best performing by the authors are SA-III and ASA. SA-III is basically
the same algorithm as the Asynchronous Approach (AS) described above. The
main difference of SA-III is an occasionally implemented local search procedure
which is activated after a given number of SA moves. The local search procedure
starts searching the neighbourhood of the current solution within a given distance



38

Table I. Results by SA-III and ASA (Run times are measured on a Pentium II 350 MHz PC with
LINUX operating system). Relative deviations should be multiplied by 100

First Set of Functions (77 functions) Absolute Deviation Relative Deviation

(46 test functions) (31 test functions)

Method SA-III ASA SA-III ASA

Average 0.53 0.62 0.33 0.24

Standard Deviation 1.84 1.95 1.03 0.37

Average Run Time (20 runs) 2.11 3.30 1.20 1.93

Second Set of Functions (29 functions) (25 test functions) (4 test functions)

Method SA-III ASA SA-III ASA

Average 14523.8 16985.28 6759.54 5754.40

Standard Deviation 34855.6 36042.18 15113.03 12865.72

Average Run Time(20 runs) 712.79 654.8 1811.6 1813.6

in the feasible space and always accepts solutions superior to the incumbent one.
The second method, namely, the Adaptive Simulated Annealing procedure (ASA)
is described in Ingber (1995) and its major contribution is the formula used for gen-
erating neighbours. A neighbour to the current reference solution is generated via
an expression which depends on the temperature corresponding to the considered
variable on which the move is to be carried out. A move is considered completed
after a perturbation is carried out in every direction.

In Table 1 we provide the summary of the results obtained by SA-III and ASA
which are the best reported performing methods in both sets of test functions. SA-
III and ASA are re-run including the extension of 10 test functions introduced
here. For each test function 20 runs are taken independently and the best result
obtained is stored. In Table 1, we report the average absolute deviation of these
best results from the global optimum when the global optimum is in the interval
[–1,1], and the relative deviation of the best results from the global optimum,
i.e., (best-opt)/abs(opt), when the absolute global optimum is greater than one.
46 test functions are compared in terms of absolute deviation and 31 test func-
tions are compared in terms of relative deviation, making up the 77 test functions
of the first set. In the second set, 25 functions and 4 functions are compared in
terms of absolute and relative deviation, respectively. Standard deviations are also
provided. All results in Table 1 are obtained by the corresponding sequential al-
gorithms which carry out 20 independent runs (asynchronously) each executing
MaxMove=1000∗N moves (starting from a random solution).

All parallel SA algorithms are developed for Distributed Memory (DM) MIMD
systems and the following hardware and software are used: 8 Pentium II 350 MHz
PCs connected by 10Mbit/second Ethernet. The parallel programs are written in C
and run using Parallel Virtual Machine (PVM) programming environment (LINUX



39

Table II. Results obtained by parallel SA implementations. (Run Times are in secs.).

Relative Deviation (31 test functions)

Method HCS MHCS MHCS AS SOEB-F SOEB-F SOEB-F SOEB-V SOEB-V SOS SOS SOS

First Set of Functions Every move NCom=100 NCom=300 NCom=5 NCom=10 NCom=20 Eps=0.05 Eps=0.10 NCom=5 NCom=10 NCom=20

Average 0.22 0.51 0.24 4.09 0.62 0.56 0.37 0.22 0.38 1.58 0.76 0.64

Standard Deviation 0.38 1.64 0.40 18.58 1.80 1.97 0.99 0.41 1.05 6.54 2.25 1.75

Average Parallel Run Time 69.90 1.90 7.33 0.33 0.47 0.53 0.63 1.40 1.43 2.47 2.41 2.44

Speedup Factor 0.09 1.29 0.31 4.03 3.47 3.26 2.79 1.74 1.91 0.69 0.69 0.70

Second Set of Functions (4 test functions)

Average 0.26 1.10 1.03 60.17 2580.13 1941.65 2037.30 1917.83 1746.31 2807.85 1421.45 1.63

Standard Deviation 0.43 1.12 1.23 132.99 5767.68 4339.99 4553.87 4286.81 3903.25 6276.86 3176.79 2.00

Average Parallel Run Time 19750.90 336.80 342.80 252.80 251.80 252.00 252.20 426.17 426.10 247.40 248.20 471.02

Speedup Factor 0.37 4.79 4.69 6.86 6.39 6.38 6.60 3.86 3.87 6.50 6.48 3.41

Absolute Deviation (46 test functions)

First Set of Functions

Average 0.25 0.13 0.20 2.31 34.90 28.53 24.01 0.45 11.46 35.67 33.68 31.03

Standard Deviation 0.90 0.48 0.61 12.29 178.86 175.52 145.00 2.21 72.49 220.26 207.19 193.12

Average Parallel Run Time 98.61 2.51 7.02 0.42 0.51 0.57 0.76 5.36 5.12 0.57 0.57 0.76

Speedup Factor 0.08 1.20 0.44 5.50 5.41 4.74 3.63 2.55 2.49 4.65 4.70 3.66

Second Set of Functions (25 test functions)

Average 0.02 9274.55 0.42 13104.12 14708.37 14606.67 14696.27 12144.22 12496.62 14820.69 14568.06 14833.71

Standard Deviation 0.03 26676.53 1.00 32887.01 33443.22 33082.06 33481.06 28251.01 28495.36 33714.15 33028.26 33818.93

Average Parallel Run Time 31706.67 157.67 164.25 117.42 116.33 116.54 117.04 933.42 948.00 113.75 114.00 114.42

Speedup Factor 0.05 4.86 4.62 1.00 6.50 6.49 6.62 0.98 0.98 6.62 6.62 6.59



40

version). We would like to mention that these algorithms could also be adapted to
Shared Memory (SM) MIMD systems.

The following parameters are used in the implementation of the parallel pro-
cedures. In all of the SA implementations devised here,β is assigned a value of
0.1 after preliminary experimentation, except for SOEB-V whereβ is assigned a
value of 0.05. All approaches are run using 20 workers each carrying out MaxMove
(1000∗N) moves. In the implementation of SOS and SOEB-F, NCom is set to 5,
10 and 20 and results are compared. For SOEB-V,ε is set to 0.05 and 0.1. HCS is
implemented in three modes: communication takes place after each parallel move
(HCS), it takes place 100 times (MHCS, NCom=100) and 300 times (MHCS,
NCom=300). Note that we need a much larger number of communications with
MHCS as compared to SOS and SOEB-F, because in MHCS each worker works
on only one variable whereas in the latter two approaches, search is carried out in
parallel through the whole domain.

We evaluate the performance of parallel SA approaches in terms of the quality
of their solutions and their computational efficiency. The algorithms are first run
sequentially and then, in parallel. In Table 2, the results of the parallel SA schemes
are reported in terms of absolute and relative deviations. The average run times
(in seconds) related to parallel applications and the speedup factor obtained by
parallelization (Sequential run time/Parallel run time) are provided in Table 2.

In Table 2, we observe that when absolute deviation is the performance cri-
terion in the first set of test functions, there is a significant difference among the
results provided by MHCS (for all NCom values) and those of the sequential SA
procedures developed previously (SA-III, ASA) as well as the remaining parallel
algorithms. However, when the criterion of relative deviation is considered, ASA’s
performance is very close to those of HCS and MHCS (NCom=300) and to that
of SOEB-V (Eps=0.05). Thus, the performance MHCS is best for the criterion of
absolute deviation as compared to those parallel and sequential algorithms. Yet, the
results obtained by MHCS seem somewhat surprising (for the criterion of absolute
deviation, 46 test functions) in terms of the values of the parameter Ncom, since
less frequent data transmission produces better results.However, the latter may be
due to the effect of randomization. Such a contradiction is not observed in the
remaining sets of test functions.

Performance in the second set of functions is crucial for all approaches, because
in the experimentation conducted previously, even the best performing sequential
methods are far from efficient both in terms of solution quality and computation
time. Consequently, we now discuss performance on the second set of problems.
In this set, all SA approaches stumble at Schwefel’s Sine Root function with the
exception of HCS and MHCS (NCom=300). The reason is that a local minimum
which is far away from the global exists in this function and it traps the search.
Nevertheless, the latter function is far from being an outlier, because performance
in other test functions is also extremely inferior as compared to those of HCS and
MHCS (NCom=300).



41

The best performing (in terms of solution quality) parallel SA approach is the
HCS. HCS (where communication takes place at every move) provides outstand-
ing results; yet, its sequential and parallel run times are excessive as compared
to the other approaches. HCS results in speedup factors which are less than one
due to the communication overhead. However, in the two MHCS implementations
(NCom=100 and NCom=300), although we observe a deterioration in performance
as compared to HCS, the quality of results are still highly superior when compared
with those of other parallel and sequential approaches, including SA-III and ASA.
An exception occurs when NCom=100 in the second set of functions where the
performance criterion is the absolute deviation from the optimum. The number of
communications in this case is far from sufficient. For the same set of functions,
when NCom=300, we obtain exceptional results with computation times and spee-
dup factors which are compatible with other approaches. A remark on MHCS is
that its parallelized modes with 100 and 300 communications result in almost no
speedup in the first set of test functions and almost five times speedup in the second
set. The reason for the latter is that in test functions with less than 10 variables
the CPU times of the workers are negligible as compared to the time required for
communications. The situation becomes vice versa in the second set of functions
with many variables, because the major load of the CPU consists of evaluating
the functional value of the considered test function after each perturbation. Con-
sequently, when MHCS is utilized, different values of NCom should be attempted,
but the general tendency is to increase NCom since parallel computation times
result in an insignificant increase specifically in solving test functions with many
variables.

Again in the second set of test functions, among the approaches other than
HCS and MHCS, SOEB-V and AS produce better results with respect to solution
quality, but the differences are not statistically significant from other parallel SA
approaches when the criterion is the absolute deviation (25 test functions). An
exception occurs when the relative deviation criterion is considered in the second
set of test functions (4 test functions); in that case, SOS provides relatively superior
results as compared to other function sets.

At this point, one may deduce the reasons why SOEB-F, SOEB-V and SOS fail
to produce sufficiently good quality results. The only difference between SOEB-
F and AS is the occasional enforcement of the best solution as the seed for all
parallel SA chains. Since the performance of AS is superior to that of SOEB-F,
it seems that imposing the same seed with no regard to individual worker anneal-
ing temperature leads the search to unfavorable directions. At least in SOEB-V,
the best solution is imposed when all Markov Chains reach the same medium of
equilibrium (annealing temperature). The performance of SOS is a disappointment
in our expectations of achieving a good rate of diversity and interaction through
crossover. This operation also seems to disrupt the state arrived by each worker
after so much effort.



42

As for the average parallel run times, in all approaches, as the number of com-
munications increase, the parallel run time increases slightly. However, in the first
set of functions, the number of communications affect run times more significantly
as compared to the second set of functions due to reduced CPU time/Communication
time ratio. For instance, the average parallel run time for AS is lower than that of
SOEB-F in the first set of functions, but not in the second set. Similar observations
can be made on SOEB-F, SOS and MHCS run times with different NCom values.
It is sufficient to compute the increase ratio for sequential and parallel run times as
NCom increases to deduce this fact.

As mentioned previously, HCS slows down considerably when parallelized (this
is also true in the second set of problems where the number of moves and hence,
communications, increase significantly). On the other hand, MHCS results in par-
allel run times which are compatible with other methods. In general, AS, SOEB-F
and SOS result in very similar parallel run times when the second set of functions
are considered. However, SOEB-V has the slowest parallel run times (except for
HCS), because some workers are idle while one or more workers struggle towards
the specified Tars.

6. Conclusion

We implement parallel SA procedures and evaluate them on large scale test func-
tions with the aim of locating the global optima within efficient computation times.
One such procedure, the Modified Highly Coupled Synchronous SA, (MHCS)
which is based on checking the joint effects of different solution configurations
achieved by parallel SA chains, outperforms previously introduced sequential SA
algorithms as well as the other parallel SA implementations described here. The
new MHCS conducts the search in parallel along possibly different directions in
space and performs moves according to probabilistic acceptance rules. Communic-
ations with the workers take place at fixed intervals and at these times the master
re-collects each incumbent variable value (pertaining to the workers) according to a
hill-climbing procedure taking into account their joint effects on the function value.
Extension of MHCS may involve features such as adaptive temperature reduction
schemes and combinatorial treatment of joint effects.

7. Appendix (First Set of Test Functions)

No Name Source / Property Reported by No. of Upper Bound, Global

Vars. Lower Bound Optimum

1 Complex Press et al. (1992) Androulakis and 2 (–2, 2) 0

(multi-modal, well-behaved) Vrahatis (1996)

2 Stenger Stenger (1975) " 2 (–1, 4) 0

(properties same as above)



43

No Name Source / Property Reported by No. of Upper Bound, Global

Vars. Lower Bound Optimum

3 Himmelblau Botsaris (1978) " 2 (–6, 6) 0

(properties same as above)

4 Helical Valley More et al. (1981) " 3 (–2, 2) 0

(properties same as above)

5 Brown almost More et al. (1981) " 3 (–2, 4) 1

linear-3 (properties same as above)

. 6 Brown almost More et al. (1981) " 4 (–2, 4) 1

linear-4 (properties same as above)

7 Extended Kearfott (1979) " 4 (–3, 4) 0

Kearfott (properties same as above)

8 Sine Envelope Schaffer (1989) Srinivas and Patnaik 2 (–100, 100) 0

Increasing barrier between minima, (1994)

multimodal, symmetric

9 Sine Envelope Srinivas, Patnaik (1994) " 2 (–100, 100) 0

– Decreasing barrier between minima,

multimodal

10 Epistacity- Srinivas, Patnaik (1994) " 2 (-0.5, 0.5) 0

k=5 Multimodal, 25 local optima

11 " Srinivas, Patnaik (1994) " 4 (–0.5, 0.5) 0

45 local optima

12 " Srinivas, Patnaik (1994) " 5 (–0.5, 0.5) 0

55 local optima

13 Spike Michalewicz (1994) Michalewicz (1994) 2 X0:–3, 12.1 38.85

Innumerable local optima with a X1: 4.1, 5.8 (max)

slight increasing tendency towards the

global maximum located in small

interval

14 Sphere http://iridia.ulb.ac.be/largerman/ Bilchev and Parmee 5 (–5.12, 5.12) 0

ICEO.html (1996)

Unimodal

15 Griewank http://iridia.ulb.ac.be/langerman/ " 5 (–600, 600) 0

ICEO.html

16 Shekel’s http://iridia.ulb.ac.be/langerman/ " 5 (0,10) –10, 40

Foxholes ICEO.html

Very many local optima,m=30

17 Michalewicz http://iridia.ulb.ac.be/langerman/ " 5 (0,π ) –4.687

ICEO.html

18 Langerma http://iridia.ulb.ac.be/langerman/ " 5 (0, 10) –1.5

ICEO.html

valley between three local optima

19 Sphere Same as 14 " 3 (–5.12, 5.12) 0

20 Permutation Neumaier web site Neumaier 4 (–4, 4) 0

Beta = 0.005 Many local minima, very hard solon.cma.univie.ac

problem , small discrepancy in .at/∼neum/glopt/my

variable values lead to large -problems

difference in function value

21 Permutation0 " " 10 (–1, 1) 0

Beta = 100

22 Powersum Neumaier web site " 8 (0, 2) 0

Singular minimum among very flat

valleys



44

No Name Source / Property Reported by No. of Upper Bound, Global

Vars. Lower Bound Optimum

23 Trid Neumaier web site " 10 (–100, 100) –210

Convex, quadratic, tridiagonal

hessian, best solved by gradient

24 Schwefel’s web site MATLAB / web site MATLAB 10 (–500, 500) 0

Sine Root TEST/Lazauskas TEST/Lazauskas

second local minimum which is very

far from global minimum traps

algorithms

25 Rastrigin web site MATLAB / " 10 (–5, 12, 5, 12) 0

TEST/Lazauskas

Highly multimodal and difficult

26 Rosenbrock Rosenbrock (1970) " 4 (–2.048, 2.048) 0

Long curved only slightly decreasing

valley, unimodal.

27 Ackley web site MATLAB / " 10 (–30, 30) 0

TEST/Lazauskas

28 Griewank http://iridia.ulb.ac.be/langerman/ http://iridia.ulb.ac.be/ 10 (−600, 600) 0

ICEO.html langerman/

4 local minima ICEO.html

29 Three Hump Levy et al. (1981) Jansson and 2 (–2, 4) 0

Camel Back Knüppel (1994)

30 Levy 1 Levy et al. (1981) " 1 (–4, 4) 7

3 local minima

31 Levy 2 Levy et al. (1981) " 1 (–10, 10) –14.508

19 local minima

32 Levy 3 Levy et al. (1981) " 2 (–10, 10) –176.541

760 local minima

33 Levy 5 Levy et al. (1981) " 2 (–10, 10) –176.137

760 local minima

34 Levy 8 Levy et al. (1981) " 3 (–10, 10) 0

125 local minima

35 Levy 9 Levy et al. (1981) " 4 (–10, 10) 0

625 local minima

36 Levy 10 Levy et al. (1981) " 5 (–10, 10) 0

105 local minima

37 Levy 11 Levy et al. (1981) " 8 (–10, 10) 0

108 local minima

38 Levy 12 Levy et al. (1981) " 10 (–10, 10) 0

1010 local minima

39 Levy 13 Levy et al. (1981) " 2 (–10, 10) 0

900 local minima

40 Levy 14 Levy et al. (1981) " 3 (–10, 10) 0

2700 local minima

41 Levy 15 Levy et al. (1981) " 4 (–10, 10) 0

71000 local minima

42 Levy 16 Levy et al. (1981) " 5 (–5, 5) 0

105 local minima

43 Levy 18 Levy et al. (1981) " 7 (–5, 5) 0

108 local minima

44 Beale Schwefel (1991) " 2 (–4.5, 4.5) 0



45

No Name Source / Property Reported by No. of Upper Bound, Global

Vars. Lower Bound Optimum

45 Schwefel 3.1 Schwefel (1991) " 3 (–10, 10) 0

46 Perturbed Schwefel (1991) " 3 (–10−6, 10−6) 0

Schewel

47 Booth Schwefel (1991) " 2 (–5, 5) 0

48 Box 3D Schwefel (1991) " 3 (–10, 30) 0

49 Kowalik Schwefel (1991) " 4 (0, 0.42) 0.000307

50 Powell Singular, hessian at origin " 4 (–2, 4) 0

51 Matyas " 2 (–30, 30) 0

52 Schewel 3.7 Schwefel (1991) " 5 (–0.005, 0.89) 0

Singular hessian atx∗ = 0

53 Schewel 3.2 Schwefel (1991) " 2 (–10, 10) 0

Singular hessian atx∗ = 0

54 Branin Törn and Zilinskas (1989) Törn and Zilinskas 2 X0: (–5, 10) 0.3978

3 local minima, slow gradient (1989) X1: (0, 15)

55 Goldstein- 4 local minima " 2 (−2, 2) 3

Price

56 Hartman 4 local minima " 3 (0,1) –3.862782

57 Six Hump Törn and Zilinskas (1989) " 2 (–5, 5) –1.031628

Camel Back

Valley

58 Rastrigin " 2 (–1, 1) –2

59 Shekel 5 Törn and Zilinskas (1989) " 4 (0, 10) –10.153

5 local minima

60 Shekel 7 Törn and Zilinskas (1989) " 4 (0, 10) –10.402

7 local minima

61 Shekel 10 Törn and Zilinskas (1989) " 4 (0, 10) –10.536

10 local minima

62 Hartman Törn and Zilinskas (1989) " 6 (0, 1) –3.32236

4 local minima

63 Ingber’s f0 Corana et al. (1987) Ingber (1995) 4 (−1000, 1000) 0

1020 local minima, gradient search is

useless

64 p3 – (2D Alluffi, Pentini (1985) Dekker and Aarts 2 (–10, 10) –186.7309

Schubert) 760 local, 18 global minima

65 p8 Alluffi, Pentini (1985) " 3 (–10, 10) 0

53 local minima

66 p16 Alluffi, Pentini (1985) " 5 (–5, 5) 0

155 local minima

67 p22 Alluffi, Pentini (1985) " 2 (–20, 20) –24775

Origin is a local minima

68 WingoA Wingo (1983) Breiman and Cutler 1 (3, 17) –28.1617∗
(1993)

69 WingoB " " 1 (2, 26) –73.452∗
70 WingoC " " 1 (4.1, 2746) –407.61∗
71 Exp 2 Breiman, Cutler (1993) " 2 (–1, 1) 0.3678∗



46

No Name Source / Property Reported by No. of Upper Bound, Global

Vars. Lower Bound Optimum

72 Exp 4 " " 4 (–1, 1) 0.1353∗
73 Cos 2 " " 2 (–1, 1) –2.2∗
74 Cos 4 " " 4 (–1, 1) –4.4∗
75 Easom Easom (1990) Stuckman and 2 (–100, 100) –1

A singleton maximum in a horizontal Easom (1992)

valley

76 De Jong f2 De Jong (1975) Wodrich and 2 (–2.048, 2.048) –3906.98

Bilchev (1997)

77 De Jong f3 – " http://iridia.ulb.ac.b 5 (–5.12, 5.12) –30

Step Function e/langerman/

ICEO.html

Note∗ : Solution may not be optimal.

8. Appendix (Second Set of Test Functions)

Name Source / Property Reported by No. of Upper Bound. Global

Vars. Lower Bound Optimum

1 Baluja-1 Baluja (1994) Wodrich and 100 (–2.56, 2.56) –100000

High interdependence among Bilchev (1997)

variables

2 Baluja-2 Baluja (1994) " 100 (–2.45, 2.56) –100000

High interdependence among

variables

3 Baluja-3 Baluja (1994) " 100 (–2.56, 2.56) –100000

No interdependence among variables

4 Sphere http://iridia.ulb.ac.be/langerman/ Bilchev and Parmee 30 (–5.12, 5.12) 0

ICEO.html (1996)

Unimodal (14th in the first set)

5 Michalewicz http://iridia.ulb.ac.be/langerman/ " 10 (0,π ) –4.687

ICEO.html (13th in the first set)

6 Powersum Neumaier web site " 64 (0, 2) 0

Singular minimum among very flat

valleys (22nd in the first set)

7a Schwefel’s web site MATLAB / Web site MATLAB 20 (–500, 500) 0

Sine Root TEST/Lazauskas /TEST/Lazauskas

Second local minimum which is very

far from global minimum traps

algorithms (24th in the first set)

7b Schwefel’s Same as above Same as above 50 (–500, 500) 0

Sine Root



47

Name Source / Property Reported by No. of Upper Bound. Global

Vars. Lower Bound Optimum

7c Schwefel’s Sine Root Same as above Same as above 100 (–500, 500) 0

Sine Root

7d Schwefel’s Same as above Same as above 150 (–500, 500) 0

Sine Root

7e Schwefel’s Same as above Same as above 200 (–500, 500) 0

Sine Root

7f Schwefel’s Same as above Same as above 400 (–500, 500) 0

Sine Root

8a Rastrigin web site MATLAB / Web site MATLAB 20 (–5.12, 5.12) 0

TEST/Lazauskas /TEST/Lazauskas

Highly multimodal (25th in the first

set)

8b Rastrigin Same as above Same as above 50 (–5.12, 5.12) 0

8c Rastrigin Same as above Same as above 100 (–5.12, 5.12) 0

8d Rastrigin Same as above Same as above 200 (–5.12, 5.12) 0

8e Rastrigin Same as above Same as above 400 (–5.12, 5.12) 0

9a Griewank http://iridia.ulb.ac.be/langerman/ Http://iridia.ulb.ac 10 (–600, 600) 0

ICEO.html (28th in the first set) be/langerman/

4 local minima ICEO.html

9b Griewank Same as above Same as above 20 (–600, 600) 0

9c Griewank Same as above Same as above 100 (–600, 600) 0

9d Griewank Same as above Same as above 200 (–600, 600) 0

9e Griewank Same as above Same as above 400 (–600, 600) 0

9f Griewank Griewank (1981) Törn and Zilinskas 50 (–100, 100) 0

Original (1989)

10a Schewel, 3.7 Schwefel (1991) Singular hessian at Jansson and 10 (–0.002, 0.63) 0

x∗ = 0 (52nd in the first set) Knüppel (1994)

10b Schewel, 3.7 Same as above Same as above 30 (–0.005, 0.36) 0

11a Ackley’s Fnc. web site MATLAB / web sit MATLAB 30 (–30, 30) 0

TEST/Lazauskas, easy TEST/Lazauskas

11b Ackley’s Fnc. Same as above Same as above 100 (–30, 30) 0

11c Ackley’s Fnc. Same as above Same as above 200 (–30, 30) 0

11d Ackley’s Fnc. Same as above Same as above 400 (–30, 30) 0

References

Aarts, E.H. and Korst, J.H.M. (1991), Boltzmann machines as a model for parallel annealing,
Algorithmica, 6: 437–465.

Aarts, E.H., de Bont, F., Haberts, E. and van Laarhoven, P. (1986), Parallel implementations of the
statistical cooling algorithm, VLSI Journal, 4: 209–238.

Ali, M.M. and Storey, C. (1994), Topographical Multi Level Single Linkage. Journal of Global
Optimization, 5: 349–358.

Aluffi-Pentini, F., Parisi, V. and Zirilli, F. (1985), Global optimization and stochastic differential
equations. Journal of Optimization Theory and Applications, 47: 1–16.



48

Androulakis, G.S. and Vrahatis, M.N. (1996), OPTAC: a portable software packaage for analyzing
and comparing optimization methods by visualization. Journal of Computational and Applied
Mathematics 72: 41–62.

Balardi, F. and Orlando, S. (1989), Strategies for a massively parallel implementaion of simulated
annealing, Parallel Architectures and Languages, PARLE ’89: 273–287.

Baluja, S. (1994), Population-based incremental learning: A method for integrating genetic search
based function optimization and competitive learning. Working Paper, CMU-CS-94-163, School
of Computer Science, Carnegie Mellon University.

Bilchev, G. and Parmee, I. (1996),Inductive search. IEEE Trans. 832–836.
Botsaris, C.A. (1996), A curvilinear optimization method based upon iterative estimation of the

eigensystem of the hessian matrix. J. of Mathematical Analysis and Applications, 63: 396–411.
Breiman, L. and Cutler, A. (1993), A deterministic algorithm for global optimization. Mathematical

Programming, 58: 179–199.
Casotto, A. Romeo, F. and Sangiovanni-Vincentelli, A. (1987), A parallel simulated annealing

algorithm for placement of macro-cells, IEEE Trans. on Computer Aided Design, 6: 838–847.
Chen, H., Flann, N.S. and Watson, D.W. (1998), Parallel genetic simulated annealing: A massively

parallel SIMD algorithm, IEEE Trans. on Parallel and Distributed Systems, 9: 126–136.
Corana, A., Marchesi, M., Marini, C. and Ridella, S. (1987), Minimizing multimodal functions of

continuous variables with the simulated annealing algorithm, ACM Trans. of Mathl. Software
13: 262–279.

De Jong, K. (1975), An analysis of the behaviour of a class of genetic adaptive systems. Ph.D. Thesis,
University of Michigan, Ann Arbor.

Dekkers, A. and Aarts, E. (1991), Global optimization and simualted annealing. Mathematical
Programming, 50: 367–393.

Demirhan, M., Özdamar, L., Helvacioğlu, L. and Birbil, Ş.I. (1999), FRACTOP: A Geometric
partitioning metaheuristic for global optimization, Journal of Global Optimization, 14: 415–435.

Diekmann, R., Lüling, R. and Simon, J. (91193), Problem independent distributed simulated an-
nealing and its applications. Working Paper, University of Paderborn, Dept. of Mathematics and
Computer Science, Germany.

Easom, E. (1990), A survey of global optimization techniques. M. Eng. Thesis, University of
Louisville, Louisville, KY.

Frost, R. (1993), Ensemble based simulated annealing, ftp.sdsc.edu/pub/sdsc/math/Ebsa, La Jolla,
CA, University of California, San Diego.

Greening, D.R. (1990), Parallel simulated annealing techniques, Physica, D42: 293–306.
Jansson, C. and Knüppel, O. (1994), Numerical Results for a self-validating global optimization

method. Working Paper, No. 94.1, Technical University of Hamburg, Harburg.
Horst, R. and Tuy, H. (1996), Global Optimization – Deterministic Approaches, 3rd ed. Springer

Verlag.
Ingber, L. (1994), Simulated annealing: Practice versus theory. J. Mathl. Comput. Modelling, 18(11):

29–57.
Ingber, L. (1995), Adaptive simulated annealing (ASA): Lessons learned. To appear in Control and

Cybernetics, (Polish Journal).
Rinnooy Kan, A.H.G. and Timmer, G.T. (1994), Stochastic methods for global optimization.

American J. of Mathematical Management Science 4: 7–40.
Kearfott, B. (1979), An efficient degree-computation method for a generalized method of bisection.

Numerical Mathematics 32: 109–127.
Kirkpatrick, A., Gelatt, Jr., C.D. and Vechi, M.P. (1983), Optimization by simulated annealing,

Science 220: 671–680.
Kliewer, G. and Tschöke, S. (1998), A general parallel simulated annealing library and its applica-

tions in industry. Working Paper, University of Paderborn, Dept. of Mathematics and Computer
Science, Germany.



49

Kravitz, S.A. and Rutenbar, R.A. (1987), Placement by simulated annealing on a multi-processor,
IEEE Trans. on Computer Aided Design 6: 534–549.

Kurbel, K., Schneider, B. and Singh, K. (1998), Solving optimization problems by parallel recom-
binative simulated annealing on a parallel computer – An application to standard cell placement
in VSLI design, IEEE Trans. on Systems, Man and Cybernetics-Part B-Cybernetics 28: 454–460.

Lee, S-Y. and Lee, K.G. (1996), Synchronous and asynchronous parallel simulated annealing with
multiple Markov Chains. IIE Transactions on Parallel and Distributed Systems 7.

Levy, A.V., Montalvo, A., Gomez and S., Calderon, A. (1981), Topics in Global Optimization:
Lecture Notes in Mathematics, No. 909, Springer-Verlag, Berlin.

Lin, F.T., Kao, C.Y. and Hsu, C.C. (1991), Incorporating genetic algorithms into simulated annealing,
F.J Cantu-Ortiz et al. (eds), Proceedings of the Int. Symposium on Artificial Intelligence: pp.
290–297.

Michalewicz, Z. (1994), Genetic Algorithms+Data Structures=Evolution Programs, Springer Verlag,
Berlin.

Moore, R.E. (1979), Methods and applications of interval analysis. SIAM, Philadelphia.
More, B. J., Garbow, B.S. and Hillstrom, K.E. (1981), Testing unconstrained optimization. ACM

Trans. Math. Software 7: 17–41.
Moore, R.E. and Ratschek, H. (1988), Inclusion functions and global optimization II. Mathematical

Programming 41: 341–356.
Özdamar, L. and Birbil, I. ¸S. (1998), A hybrid genetic algorithm for the capacitated lot sizing and

loading problem, European Journal of Operational Research 110: 525–547.
Özdamar, L. and Demirhan, M. (2000a), Experiments with new stochastic global optimization search

techniques, Computers and OR 27: 841–865.
Özdamar, L and Demirhan, M. (2000b), Comparison of partition evaluation measures in an adaptive

partitioning algorithm for global optimization, to appear in Fuzzy Sets and Systems.
Özdamar, L. (1999), A genetic algorithm approach for the multi-mode resource-constrained project

scheduling problem under general resource categories. IEEE Transactions on Systems, Man and
Cybernetics 29: 44–69.

Pinter, J. (1992), Convergence qualification of adaptive partitioning algorithms in global optimiza-
tion, Mathematical Programming 56: 343–360.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992), Numerical Recipes, The
Art of Scientific Computing,. Cambridge University Press, New York.

Price, W.L. (1998), A controlled random search procedure for global optimization, in L.C.W. Dixon
and G.P. Szegö (eds), Towards Global Optimization 2, North-Holland, Amsterdam.

Rosenbrock, H.H. (1970), State-Space and Multivariable Theory, Nelson, London.
Schaffer, J.D. (1989), A study of control parameters affecting online performance of genetic

algorithms for function optimization. Proc. of the Third Int. Con. on Genetic Algorithms: 51–60.
Schwefel, H. (1991), Numerical Optimization of Computer Models, Wiley, New York. Srinivas, M.

and Patnaik, L.M. (1994), Adaptive probabilities of crossover and mutation in genetic algorithms.
IEEE Transactions on Systems, Man and Cybernetics 24: 656–667.

Stenger, F. (1975), Computing the topological degree of a mapping inℵn, Numerical Mathematics
25: 23–38.

Stuckman, B.E. and Easom, E.E. (1992), A comparison of Bayesian/Sampling global optimization
techniques, IEEE Transactions on Systems, Man and Cybernetics 22: 1024–1032.

Törn, A. (1978), A search clustering approach to global optimization, in L.C.W. Dixon and G.P.
Szegö (eds), Towards Global Optimization 2, North-Holland, Amsterdam.

Törn, A. and Zilinskas, A. (1989), Global Optimization. Lecture Notes in Computer Science,
Springer-Verlag, Berlin.

Törn, A. and Viitanen, S. (1994), Topographical global optimization using pre-sampled points.
Journal of Global Optimization 5: 267–276.



50

Törn, A., Ali, M.M. and Viitanen, S. (1999), Stochastic global optimization: Problem classes and
solution techniques, Journal of Global Optimization 14: 437–447.

Wendt, O. and König, W. (1998), Cooperative simulated annealing: How much cooperation is
enough?, Working Paper, Frankfurt University.

Wingo, D.R. (1983), Estimating the location of the Cauchy distribution by numerical global
optimization. Communications in Statistics Part B. Simulation and Computation 12: 201–212.

Wodrich, M. and Bilchev, G. (1997), Cooperative distributed search: The ant’s way. Working Paper,
University of Cape Town, South Africa.

Zacharias, C.R., Lemes, M.R. and Pino, A.D. (1998), Combining genetic algorithms and simu-
lated annealing: a molecular geometry optimization study. THEOCHEM – Journal of Molecular
Structure 430: 29–39.

Zilinskas, A. (1981), Two algorithms for one-dimensional multimodal minimization, Optimization
12, 53–63.


